向程江 1,2刘晓凤 2,3,*陶春先 1李大伟 2,3[ ... ]邵建达 2,3,4,5
作者单位
摘要
1 上海理工大学光电信息与计算机工程学院,上海 200093
2 中国科学院上海光学精密机械研究所薄膜实验室,上海 201800
3 中国科学院强上海光学精密机械研究所激光材料重点实验室,上海 201800
4 中国科学院大学材料科学与光电子工程中心,北京 100049
5 国科大杭州高等研究院,浙江 杭州 310024
时间分辨的泵浦探测技术是研究光学元件损伤动态过程的有力手段。基于增强电荷耦合器件(ICCD)的时间分辨泵浦探测技术,对比研究了1064 nm纳秒激光辐照下HfO2/SiO2增透膜膜面处于激光入射面(正向过程)和出射面(反向过程)两种情况下的动态损伤过程。在同一能量密度(52 J/cm2)激光辐照下,正向和反向过程都产生了无膜层剥落的小坑损伤以及伴随膜层剥落的小坑损伤,但反向过程产生的小坑的横向尺寸和深度都比正向的大。有限元分析结果表明正向和反向过程中增透膜内部的基底-膜层界面场强相似,但实际损伤形貌尺寸以及依据冲击波传播速度计算得到的爆炸能量都表明反向过程沉积的能量更大,可见等离子体形成后在后续激光脉冲辐照下的发展过程决定了两种情况下的损伤差异。增透膜损伤的时间分辨研究对其损伤机制分析以及实际应用具有重要意义。
薄膜 增透膜 激光诱导损伤 时间分辨 等离子体 冲击波 
中国激光
2024, 51(8): 0803101
Chen Hu 1,2,3Songlin Wan 1,2,*Guochang Jiang 1,2Haojin Gu 1,2[ ... ]Jianda Shao 1,2,3,4,5,*
Author Affiliations
Abstract
1 Precision Optical Manufacturing and Testing Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai, China
2 Key Laboratory for High Power Laser Material of Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
5 China-Russian Belt and Road Joint Laboratory on Laser Science, Shanghai, China
The large-aperture pulse compression grating (PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser; however, the size of the PCG manufactured by transmission holographic exposure is limited to large-scale high-quality materials. The reflective method is a potential way for solving the size limitation, but there is still no successful precedent due to the lack of scientific specifications and advanced processing technology of exposure mirrors. In this paper, an analytical model is developed to clarify the specifications of components, and advanced processing technology is adopted to control the spatial frequency errors. Hereafter, we have successfully fabricated a multilayer dielectric grating of 200 mm × 150 mm by using an off-axis reflective exposure system with Φ300 mm. This demonstration proves that PCGs can be manufactured by using the reflection holographic exposure method and shows the potential for manufacturing the meter-level gratings used in 100 petawatt class high-power lasers.
high-power laser off-axis reflective exposure system pulse compression grating spatial frequency errors specifications 
High Power Laser Science and Engineering
2024, 12(1): 010000e1
Kun Shuai 1,2,3Yuanan Zhao 1,2,3,*Xiaofeng Liu 1,2,3,*Xiangkun Lin 1,2,3[ ... ]Jianda Shao 1,3,9
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai, China
4 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
5 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
6 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
7 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
8 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
9 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
laser-induced damage threshold multilayer dielectric gratings nanosecond laser conditioning nodular defects picosecond–petawatt laser systems 
High Power Laser Science and Engineering
2023, 11(6): 06000e89
胡晨 1,3魏朝阳 1,3,*万嵩林 1江国昌 1[ ... ]邵建达 1,2,3,**
作者单位
摘要
1 中国科学院上海光学精密机械研究所精密光学制造与检测中心,上海 201800
2 中国科学院上海光学精密机械研究所高功率激光材料重点实验室,上海 201800
3 中国科学院大学材料科学与光电子工程中心,北京 100049
随着激光脉冲宽度极限的不断突破以及峰值功率的不断提高,脉宽压缩光栅的尺寸需要进一步增大。但反射式曝光系统所需大口径长焦距离轴镜的高精度加工检测成为制约大口径光栅制作的难题。采用计算全息补偿检测不需要复杂的设计和装调,但同样会引入非回转对称和复杂的二维投影畸变。传统的畸变校正方法由于精度受限或计算复杂不利于工程应用。提出基于数值计算的畸变校正方法,该方法具有简单通用易于编程的优点。利用800 mm口径折反镜在直径为18 m光学平台上搭建了面形检测光路,通过系统误差标定去除以及畸变校正的方法实现了高精度面形测量,经磁流变迭代加工后,面形精度RMS可收敛至0.013λλ=632.8 nm),这为后续大口径反射式曝光系统的建立奠定了基础。
离轴抛物面镜 计算全息图 误差标定 投影畸变校正 
中国激光
2023, 50(23): 2304002
作者单位
摘要
1 中国科学院上海光学精密机械研究所精密光学制造与检测中心,上海 201800
2 中国科学院大学材料科学与光电技术学院,北京 100049
大气等离子体刻蚀是一种非接触式、材料去除可控的加工方法,在光学元件的高精度加工中具有广泛的应用前景。但是大气等离子体刻蚀后元件存在表面形貌恶化的问题,严重影响元件的性能和使用寿命。进行氢氟酸刻蚀实验,证明了元件表面形貌的恶化是由氟碳化合物和表面凹坑微结构两个原因引起的。为了解释表面凹坑微结构的形成,提出基于micro-mask壁面反射增强理论的凹坑形成模型,并开展了样品表面旋涂金纳米颗粒充当micro-mask的刻蚀实验。实验结果验证了micro-mask壁面反射增强模型的正确性,为解决大气等离子体刻蚀后元件表面形貌恶化问题提供了新的思路和方法。
壁面反射增强 熔石英 表面形貌 形成机理 大气等离子体 
光学学报
2023, 43(21): 2124002
张文妮 1,2,3曹红超 1,3孔钒宇 1,3张益彬 1,3[ ... ]邵建达 1,3,4
作者单位
摘要
1 中国科学院上海光学精密机械研究所薄膜光学实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 中国科学院上海光学精密机械研究所强激光材料重点实验室,上海 201800
4 中国科学院超强激光科学卓越创新中心,上海 201800
针对传统熔石英激光窗口在碱金属蒸气环境下易腐蚀的痛点问题,提出了在蓝宝石材料上制备增透微结构的方法,以实现耐高温、耐腐蚀的高透激光窗口。在理论仿真的基础上,采用干涉曝光与反应离子束刻蚀技术,在蓝宝石基底表面上制备了增透微结构,其对795 nm光的单面透过率达到99.23%。在此基础上,制备了双面增透微结构和一面增透微结构一面增透膜的蓝宝石窗口片,相较于蓝宝石基底,它们对795 nm光的透过率分别提升了12.13%和13.02%。高功率激光作用温升测试结果表明,当激光功率从35 W增加到99.6 W时,裸基板温度增加了5.9 ℃,但是双面增透样品的温升均为3.8 ℃,表明双面增透处理可以适当降低温升。同时,光束质量测试结果表明,当高功率激光作用下微结构窗口的温度控制在200 ℃以内时,双面增透样品的光束质量因子在横向上的变化小于0.05,在纵向上的变化小于0.06,表明该增透窗口对入射光光束质量的影响甚小。
薄膜 增透微结构 干涉曝光 反应离子束刻蚀 
中国激光
2023, 50(22): 2203101
陈欢 1,2魏朝阳 1,2,*曹珍 1,2,**彭小聪 1,2邵建达 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所精密光学制造与检测中心,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
首先基于一维双温模型阐明了飞秒激光与RB-SiC表面的相互作用过程,并在此基础上,开展了RB-SiC表面飞秒激光烧蚀规律与抛光工艺研究。结果表明,通过改变脉冲能量、扫描速度、扫描间距等参数,可实现对烧蚀深度和烧蚀表面质量的有效调控。但是通过飞秒激光抛光难以在RB-SiC切割表面上获得较高的表面质量,而对于RB-SiC预抛光表面,通过工艺参数调控,可将其表面粗糙度从36.9 nm抛光至11.56 nm,验证了飞秒激光抛光RB-SiC的可行性。
激光技术 粗糙度 反应烧结碳化硅 飞秒激光抛光 双温模型 
中国激光
2023, 50(24): 2402203
Wenyun Du 1,2Meiping Zhu 1,2,3,4,*Jun Shi 1,2,3Tianbao Liu 1,2[ ... ]Jianda Shao 1,2,3,4
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
3 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
4 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai, China
The laser-induced damage threshold (LIDT) of plate laser beam splitter (PLBS) coatings is closely related to the subsurface absorption defects of the substrate. Herein, a two-step deposition temperature method is proposed to understand the effect of substrate subsurface impurity defects on the LIDT of PLBS coatings. Firstly, BK7 substrates are heat-treated at three different temperatures. The surface morphology and subsurface impurity defect distribution of the substrate before and after the heat treatment are compared. Then, a PLBS coating consisting of alternating HfO2–Al2O3 mixture and SiO2 layers is designed to achieve a beam-splitting ratio (transmittance to reflectance, s-polarized light) of approximately 50:50 at 1053 nm and an angle of incidence of 45°, and it is prepared under four different deposition processes. The experimental and simulation results show that the subsurface impurity defects of the substrate migrate to the surface and accumulate on the surface during the heat treatment, and become absorption defect sources or nodule defect seeds in the coating, reducing the LIDT of the coating. The higher the heat treatment temperature, the more evident the migration and accumulation of impurity defects. A lower deposition temperature (at which the coating can be fully oxidized) helps to improve the LIDT of the PLBS coating. When the deposition temperature is 140°C, the LIDT (s-polarized light, wavelength: 1064 nm, pulse width: 9 ns, incident angle: 45°) of the PLBS coating is 26.2 J/cm2, which is approximately 6.7 times that of the PLBS coating deposited at 200°C. We believe that the investigation into the laser damage mechanism of PLBS coatings will help to improve the LIDT of coatings with partial or high transmittance at laser wavelengths.
laser-induced damage threshold nodule defect plate laser beam splitter subsurface impurity defect 
High Power Laser Science and Engineering
2023, 11(5): 05000e61
Yuxing Han 1,2,3Hongchao Cao 1,3,6Fanyu Kong 1,3,6Yunxia Jin 1,3,4,6,*Jianda Shao 1,3,4,5,6
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai, China
4 CAS Center for Excellence in Ultra-Intense Laser Science, Chinese Academy of Sciences, Shanghai, China
5 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
6 China-Russian Belt and Road Joint Laboratory on Laser Science, Shanghai, China
Maximizing the energy-loading performance of gratings is a universal theme in high-energy pulse compression. However, sporadic grating designs strongly restrict the development of high-power laser engineering. This study proposes an all- and mixed-dielectric grating design paradigm for Nd:glass-based pulse compressors. The solution regions are classified according to the line density. High diffraction efficiency solutions are described in more detail based on the dispersion amount and incident angle. Moreover, an energy scaling factor of 7.09 times larger than that of the National Ignition Facility’s Advanced Radiographic Capability (NIF-ARC) is obtained by taking advantage of the low electric field intensity at transverse magnetic polarization and a small incident angle. These results make a pioneering contribution to facilitate future 20–50-petawatt-class ultrafast laser systems.
all-dielectric grating high-peak-power laser large deviation angle Littrow configuration mixed metal-dielectric grating 
High Power Laser Science and Engineering
2023, 11(5): 05000e60
赵元安 1,2,3连亚飞 1,3李婷 1,3彭小聪 1,3[ ... ]邵建达 1,2,3
作者单位
摘要
1 中国科学院 上海光学精密机械研究所 薄膜光学实验室,上海 201800
2 中国科学院大学 材料与光电研究中心,北京 100049
3 中国科学院 强激光材料重点实验室,上海 201800
KDP类晶体是唯一可以满足ICF激光驱动装置通光口径的非线性光学晶体材料。该类晶体采用水溶液生长法生长,易于产生宏观包裹体和微观晶格缺陷,在高功率激光辐照下晶体内部易产生高密度pinpoint损伤现象,这与其他方法生长的晶体只是受限于光学加工的表面损伤问题相比具有明显不同。KDP类晶体内部的缺陷或前驱体诱导激光损伤与晶体切向、激光波长及偏振方向等密切相关,使得应用于ICF激光驱动器中不同光学功能的、来源于同一晶坯的不同晶体元件也表现出损伤性能的差异性,因此其损伤机理非常复杂,迫切需要认识该类晶体的激光损伤机理问题。回顾了上海光学精密机械研究所联合福建物质结构研究所、山东大学等晶体研制单位联合开展的关于KDP类晶体激光诱导损伤特性的研究工作,进行了用于光开关、倍频以及混频等功能的KDP和不同氘含量DKDP晶体的激光损伤研究,指导了晶体生长工艺优化和过程关键因素控制,并对仍存在的问题及解决方案进行了展望,对于高性能KDP类晶体的研制以及在高功率激光系统中的合理应用具有参考价值。
KDP类晶体 激光损伤 缺陷 激光损伤前驱体 热吸收 非线性吸收 激光预处理 KDP-family crystals laser induced damage defect precursor thermal absorption nonlinear absorption laser conditioning 
强激光与粒子束
2023, 35(7): 071001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!